2018-2019 Undergraduate and Graduate Catalog [ARCHIVED CATALOG]
Edward E. Whitacre Jr. College of Engineering Graduate Programs
|
|
The Edward E. Whitacre Jr. College of Engineering offers programs of instruction and research leading to the Master of Science and the Doctor of Philosophy degrees with majors in chemical, civil, computer science, electrical, industrial, mechanical, and petroleum engineering. Details about these programs can be found in the catalog text for individual departments within the College of Engineering. In addition, the college administers the following programs:
Texas Tech offers dual degrees with an international partner in Whitacre College of Engineering. These programs result in Texas Tech students receiving a degree from Texas Tech and the international partner institution. These degrees are based on a reciprocal exchange. Texas Tech students pay tuition and fees at Texas Tech, and international students pay tuition and fees at their home institution. After the first year, the students exchange places for a semester or year. The degrees and participating instituions are as follows:
- M.S. and M.E. – Jade Hochschule-Wilhelmshaven (Germany)
- Ph.D. – Instituo Tecnologico y de Estudios Superiores de Monterrey (ITESM) (Mexico)
- Ph.D. – Pontificia Universidad Catolica de Valparaiso (PUCV) (Chile)
Department of Chemical Engineering
All master’s students and doctoral candidates are required to register for CHE 7121 , CHE 7122 , or CHE 7123 each long semester unless exempted by the chairperson.
Department of Civil, Environmental and Construction Engineering
The Department of Civil, Environmental and Construction Engineering offers a Doctor of Philosophy in Civil Engineering and two master’s degrees: Master of Science in Civil Engineering (M.S.C.E.) and Master of Environmental Engineering (M.Env.E). The M.Env.E. degree program includes a two-semester capstone team design project, but no thesis.
For master’s and doctoral degrees in civil engineering, students may choose one or more of several areas of concentration including environmental engineering, water resources engineering, structural engineering, wind engineering, engineering mechanics, geoenvironmental engineering, geotechnical engineering, transportation engineering, and construction engineering and management. Professors and instructors reserve the right to restrict the use and type of calculators used during class hours and tests.
Admission. Students with a baccalaureate degree in engineering may enter the graduate program by having their entrance credentials evaluated by both the Graduate School and the department. For applicants with a baccalaureate degree in science or mathematics, certain leveling courses in engineering normally are required. Persons entering the graduate program in civil engineering must consult with a graduate advisor within their program.
Department of Computer Science
The Department of Computer Science offers M.S. and Ph.D. degrees in computer science as well as a M.S. degree and certification in software engineering. The graduate programs cover various modern and active research areas in cyber security, artificial intelligence, software engineering, computer networks, high-performance computing, and data science. Students also should refer to the Graduate School section of the catalog and general rules/regulations for graduate degrees. Students who do not have a background in computer science are required to take leveling courses that cannot be counted as the required hours for graduation. Students in other departments at Texas Tech who wish to transfer to computer science must first complete all leveling courses or show that they have taken the equivalent courses at another university before their application will be considered. Please see the Department of Computer Science website for additional details and requirements of the Graduate Program and admissions (www.cs.ttu.edu).
The department offers two M.S. degrees: a Master of Science in Computer Science (M.S.C.S.) and a Master of Science in Software Engineering (M.S.S.E). The M.S.C.S. is a degree program designed to strengthen knowledge in advanced computer sciences areas spanning from hardware systems, software systems to computer networks and applied computing. The M.S.S.E. is a degree program with an emphasis on advanced software engineering concepts including software design and quality assurance methodologies and practices in software and system production. Both degree programs require filing a degree plan within the student’s first semester of study and passing the Final Comprehensive Examination as required by the university.
Please see the department website for additional details and requirements of the Graduate Program and admissions (www.cs.ttu.edu).
Department of Electrical and Computer Engineering
The Department of Electrical and Computer Engineering offers students the opportunity of graduate study under the direction of faculty members in an atmosphere of enthusiasm for learning. Master’s and doctoral degrees are awarded to students completing a comprehensive program of courses, examinations, and thesis or dissertation. Courses provide breadth and depth of knowledge; thesis and dissertation projects are an important expression of creative research activity. A non-thesis option is available for master’s students.
The department hosts a number of large research centers and labs. The research ranges from pulsed power to solid state device research. Many of the Ph.D. students are supported by outside grants for carrying out the research. The Ph.D. students are complemented by post docs and undergraduate assistants. ECE hosts the following centers and labs: The Center for Nanophotonics conducts research and development on manipulation of photons-electrons in nano-scale materials for innovative photonic devices and emerging technologies. The Center’s research areas cover a broad spectrum, ranging from basic to applied, and dealing with state-of-the-art nano-scale material synthesis, fundamental physics, device fabrication and testing. The Center for Pulsed Power and Power Electronics performs research work on generating very short and high voltage and current pulses. The Nano Tech Center works on very small devices including MEMS and optical devices. The RF System-on-a-Chip Laboratory performs research into advanced efficient RF amplifiers for cellular phones. The Applied Vision Laboratory uses pattern recognition to exam properties and defects in all types of materials. The Biomedical Integrated Devices and Systems (BIDS) Laboratory emphasizes multidisciplinary research in mathematical modeling and algorithms for signal and image processing. The Neuro-Imaging, Cognition and Engineering Laboratory develop models of perception, memory, neurological diseases and language as they relate to the underlying structure and neural circuitry of the human brain. A rapidly expanding world class research facility with assets related to renewable power systems valued at over $20 Million at Reese Technology Center (10 miles west of Texas Tech University campus) has recently been established. It hosts the newly established GLEAMM (Global Laboratory for Energy Asset Management and Manufacturing) initiative. This work is coordinated by the National Wind Institute.
The department offers a Master of Science in Electrical Engineering (M.S.E.E.). The master’s degree program prepares students for successful professional careers in electrical engineering based on a broad foundation and specialized technical expertise.
Students working toward the M.S.E.E. degree have the option of writing a thesis or taking additional courses. During their first semester, students must declare a thesis or non-thesis option. Later, if desired, they may switch from the thesis to the non-thesis option with the permission of their thesis advisor. However, thesis credit hours they may have earned will not count toward the non-thesis degree. Alternately, students may switch from the non-thesis to the thesis option with permission of the graduate advisor. For more information visit: www.depts.ttu.edu/ece/grad/ms/
Department of Industrial, Manufacturing and Systems Engineering
The Master of Science in Industrial Engineering (M.S.I.E.), Master of Science in Systems and Engineering Management (M.S.SYEM), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers and engineering managers for industry, consulting, university teaching and research.
With the counsel of a graduate advisor, students are expected to design individualized academic programs. The master’s level programs consist of two options: (1) a 30-hour thesis option, including 6 credit hours of thesis research, and (2) a 30-hour non-thesis option. The course selection may include a minor in an area outside industrial engineering. The doctoral program requires a minimum of 60 hours of coursework beyond the bachelor’s degree, which may include up to 15 hours constituting a minor area. At least 12 hours of doctoral dissertation enrollment are also required for the doctoral degree. Transfer credits from a master’s degree program are determined by a graduate advisor.
Master’s and Ph.D. programs incorporate courses taken in each of the five specialty areas below.
- Engineering Management: Systems theory, decision theory, industrial cost analysis, advanced engineering economics, performance improvement in organizations, project management, and productivity management.
- Ergonomics and Human Factors Engineering: Occupational biomechanics, work physiology, industrial ergonomics, cognitive engineering, human performance, human computer interaction, and occupational safety.
- Manufacturing and Quality Assurance: Manufacturing engineering and design, computer integrated manufacturing/CAD/CAM, process analysis and economics, automated manufacturing and process planning, programmable control systems.
- Operations Research: Simulation modeling, scheduling and sequencing, just-in-time production systems, inventory and production control, linear and nonlinear programming, network analysis, artificial intelligence and expert system.
- Statistics and Quality Assurance: Design of experiments, statistical data analysis, reliability and maintainability, on-line and off-line quality assurance, and total quality assurance.
The Master of Science in Industrial Engineering (M.S.I.E.), the Master of Science in Systems and Engineering Management (M.S.SYEM) and the Ph.D. in Systems and Engineering Management (Ph.D.SYEM) programs are offered both on campus and by distance education and are designed to prepare graduates for positions in technical management. Details regarding admission and degree requirements are available from the department.
Department of Mechanical Engineering
Students seeking master’s or doctor’s degrees should consult the department graduate advisor about their plans of study before enrolling for any courses. The student may wish to emphasize coursework and research activities in any one of the following areas: thermal sciences and fluid mechanics, dynamics and controls, design, or solid mechanics and materials, or transdisciplinary studies. The department has no specific foreign language requirement. Research tools are included as an integral part of the degree program in the leveling, minor, or major courses of each student. All courses are determined by the student’s advisory committee. Students are required to take ME 5120 in their first full-time graduate semester. For the rest of their program, students are required to attend a number of seminars. The seminar course does not count toward fulfilling credit hour requirements. Departmental guidelines for coursework, advisory committee, seminar course, technical papers, and the final evaluation can be obtained from the department graduate advisor.
Admission. Before being recommended for admission to a master’s degree program with a major in this department, the student may be requested to take a preliminary examination to determine proficiency in background for graduate work or may be required to take (without graduate credit) such undergraduate leveling courses as may be designated by the department.
Bob L. Herd Department of Petroleum Engineering
Graduate studies in petroleum engineering prepare the engineer to assume responsibility in technical and managerial areas within the oil and gas industry. Historically, the graduate can expect to be challenged quickly and in areas of strong potential for personal and professional growth. The Petroleum Engineering Department at Texas Tech prepares the advanced student with the technical skills required to meet the challenges of the field. All students are required to have a Window-based laptop computer.
All graduate-level petroleum engineering courses must be taken for credit. No more than six hours of PETR 5000 may appear on a master’s/doctoral degree plan without approval of the Graduate Dean. All PETR 5000 courses must receive graduate advisor approval.
The curriculum is organized into four petroleum engineering areas as specified in the Society of Petroleum Engineering nomenclature. In each area, the courses are divided into core courses and elective courses. The master’s degree plan will include at least one course from each of the core areas. Please see Master of Science in Petroleum Engineering section for more detail in the requirements. The doctoral degree plan will include an additional two core courses, beyond the master’s requirements. Please see Petroleum Engineering Ph.D. section for more detail in the requirements. Core courses for each area are outlined below.
Drilling Engineering: PETR 5303 , PETR 5315
Production Engineering: PETR 5316 , PETR 5317
Reservoir Engineering: PETR 5308 , PETR 5320
Formation Evaluation: PETR 5304 , PETR 5305
Program Offerings & Course Descriptions
ProgramsIntra-institutional Dual DegreeInter-institutional Dual Degree- Engineering, M.E., Inter-institutional Degree with Germany
- Engineering, Ph.D., Inter-institutional Degree with Chile
- Engineering, Ph.D., Inter-institutional Degree with Mexico
- Industrial Engineering, M.S., Inter-institutional Degree with Germany
- Mechanical, Engineering, M.S., Inter-institutional Degree with Germany
- Systems and Engineering Management , M.S., Inter-institutional degree with Germany
Master’s- Bioengineering, M.S.
- Chemical Engineering, M.S.Che.E.
- Civil Engineering, M.S.C.E.
- Computer Science, M.S.C.S.
- Electrical Engineering: Non-Thesis Option, M.S.E.E.
- Electrical Engineering: Thesis Option, M.S.E.E.
- Engineering, Healthcare Engineering Option, M.Engr.
- Engineering, M.Engr.
- Industrial Engineering, M.S.I.E.
- Manufacturing Engineering, M.S.Mfg.E.
- Mechanical Engineering, M.S.M.E.
- Petroleum Engineering, with Thesis, M.S.P.E.
- Petroleum Engineering, without Thesis, M.S.P.E.
- Software Engineering, M.S.
- Systems and Engineering Management, M.S.SYEM
DoctoralGraduate Certificates
The director of each certificate, in consultation with the director of graduate studies, will develop and specify a program of study appropriate for each student. If students decide to pursue studies beyond the certificate level, course credit earned toward the certificate can be considered toward a graduate degree.
Graduate certificates are intended to meet the supplemental post-baccalaureate education needs of professionals. A graduate certificate program is a set of courses that provides in-depth knowledge in a subject matter. The set of courses provides a coherent knowledge base.
A student applying for a graduate certificate program will be admitted with a “GCRT” designation. Some certificate programs require the GRE or GMAT, and some do not. To take any graduate course, all prerequisite courses (including undergraduate courses) must be taken and necessary background obtained before attempting the course. A student will be required to have a baccalaureate degree to start a graduate certificate program. There is only one exception to having a baccalaureate degree. If an undergraduate student from Texas Tech University has a 3.0 GPA or better and is within 12 hours of completion of a baccalaureate degree, the student may start taking graduate courses toward a graduate certificate. The student must have a baccalaureate degree to receive a graduate certificate.
Graduate credits earned while the student is enrolled in a graduate certificate program may not be applied toward a graduate degree unless the student completes the GRE or GMA T and enrolls as a fully accredited graduate student. After taking the GRE or GMA T and fulfilling all other admission requirements, a student may use the courses taken for a graduate certificate degree if the courses fulfill the requirements of the program of study for the degree.
Graduate students may pursue a graduate certificate that is outside their graduate program of study. No more than one transfer course (if approved by the advisor of the graduate certificate program and the Graduate School) will be allowed for a graduate certificate program. If a graduate student is in good standing and dropping out of the graduate program, the student may receive a graduate certificate if the necessary courses have been taken. To receive a graduate certificate, a student must have a GPA of 3.0 or better. No grade lower than a C will be accepted.
CoursesCS - Computer Science (Graduate Courses)ECE - Electrical and Computer Engineering (Graduate Courses)Page: 1
| 2
| 3
| 4
|