2017-2018 Undergraduate and Graduate Catalog [ARCHIVED CATALOG]
Department of Chemical Engineering
|
|
Sindee L. Simon, Ph.D., Chairperson
Horn Professors: McKenna, Simon
Professors: Chen, Khare, Sacco, Weeks
Associate Professors: Gill, Hedden, Vanapalli, Vaughn, Wiesner
Assistant Professors: Chang, Khatib, Lacerda, Li, Marston, Nuraje
Assistant Professor of Practice: Hu
CONTACT INFORMATION: 204 Chemical Engineering Building, Box 43121, Lubbock, TX 79409-3121, T 806.742.3553, F 806.742.3552, www.depts.ttu.edu/che/index.php
About the Department
This department supervises the following degree programs:
Vision. The Department of Chemical Engineering will be the undergraduate Chemical Engineering department of choice in Texas and will be recognized as one of the top research and graduate Chemical Engineering departments in the nation.
Mission. The Department of Chemical Engineering educates, conducts research, and disseminates chemical engineering knowledge through internationally recognized programs for the benefit of society.
Program Educational Objectives. The undergraduate program educational objectives embody the expected accomplishments of graduates during their first few years following graduation. The program educational objectives of the Department of Chemical Engineering (CHE) as adopted by the CHE faculty, with advice from students, alumni, and the CHE External Advisory Board are as follows:
- Graduates will be successful in chemical engineering-related careers and other diverse career paths.
- Graduates will continue professional development and will pursue continuing education opportunities relevant to their careers.
- Some graduates will pursue advanced degrees.
Student Outcomes. Student outcomes are statements of the expectations for the knowledge and skills that students should possess when they graduate with a Chemical Engineering BS from Texas Tech University.
Graduates of the program must demonstrate the following:
- An ability to apply knowledge of mathematics, science, and engineering.
- An ability to design and conduct experiments, as well as to analyze and interpret data.
- An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- An ability to function on multidisciplinary teams.
- An ability to identify, formulate, and solve engineering problems.
- An understanding of professional and ethical responsibility.
- An ability to communicate effectively.
- The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- A recognition of the need for, and an ability to engage in, lifelong learning.
- A knowledge of contemporary issues.
- An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Program Overview. The profession of chemical engineering combines the principles of physical and chemical sciences with the discipline of engineering to solve modern technological problems and be of effective service to society. The chemical engineer is largely responsible for the continual development of new processes and new products that have a direct impact on improving the quality of life and the environment. To this end, the department provides a broad-based program with individual, academic, and professional counseling.
The importance of professionalism in engineering cannot be overemphasized. Chemical engineering students are presented with a code of professional behavior and ethics at each academic level and are required to adhere to it. Copies of these codes are available on request.
The chemical engineering curriculum is sufficiently general that upon completion the student is prepared for a career in any of the process industries that involve chemical transformations. Employment opportunities cover a wide spectrum that includes, among others, petroleum, plastics production, basic chemicals, petrochemicals, pharmaceuticals, metals, textiles, semiconductors, and various biomedical and biological specialties. Many chemical engineers also are directly involved in the design of systems to minimize pollution of the environment or are active with governmental regulatory agencies that set environmental standards.
Continuing advances in the practice of chemical engineering include extensive use of computer simulation and computer control of chemical processes. The Department of Chemical Engineering at Texas Tech has well-established programs in both of these areas. All chemical engineering students must have access to a personal laptop computer running the Windows operating system, including Microsoft Word, Microsoft Excel, and MatLab software. Many on-campus classes have their own Internet sites, and some classes are available only on the Internet. For this reason, access to an Internet provider is strongly recommended.
To be prepared for professional training as well as to practice chemical engineering professionally, it is essential that the prospective engineer have a good background in the physical sciences, namely mathematics, physics, and chemistry, in addition to the engineering sciences. Summer experience in a chemical processing industry is strongly recommended as part of the preparation for professional practice. To illustrate the application of engineering principles, visits to processing installations may be required as part of academic coursework.
Undergraduate Program
General Standards and Requirements. Admission requirements and academic standards for the Department of Chemical Engineering are consistent with the plan for the Edward E. Whitacre Jr. College of Engineering. Refer to the introduction to the Whitacre College of Engineering section of this catalog for a description of the criteria for initial admission to the Whitacre College of Engineering and the lower-division foundational curriculum. The recommended foundational curriculum for chemical engineering consists of ENGL 1301 , ENGL 1302 ; MATH 1451 , MATH 1452 ; CHEM 1307 /CHEM 1107 ; PHYS 1408 ; and CHE 1305 .
A student may apply for admission to the upper division of a degree program upon completion of the foundational curriculum and a minimum of 12 credit hours of Texas Tech coursework. The acceptance criterion is based exclusively on a cumulative GPA for coursework completed at Texas Tech. The specific GPA standard varies among the degree programs and may change from one academic year to the next as necessary to align enrollments with the educational resources. For students who entered Texas Tech prior to June 1, 2012, a minimum 2.0 GPA is required for admission to the chemical engineering upper-division degree program. Students entering Texas Tech after June 1, 2012, must have a minimum 2.5 GPA.
The academic standards required by the Whitacre College of Engineering and the Department of Chemical Engineering are given in the introduction to the Whitacre College section of the catalog and summarized below. Exceptions to these standards are at the discretion of the dean of the Whitacre College of Engineering.
A grade of C or better is required for all courses in an engineering degree plan.
A grade of C or better must be achieved in all prerequisites before the subsequent course may be attempted.
A minimum 2.5 GPA is required to maintain academic good standing and continued membership in the Whitacre College of Engineering.
A full-time student must achieve a C or better in 18 credit hours of coursework in the degree plan in each year (fall and spring).
An engineering course may be repeated only one time after a course drop, withdrawal, or failure to achieve a C or higher. A maximum of three engineering courses may be repeated.
Assessment. The department uses outcome assessment to monitor quality. In addition to activities that contribute to course grades, students should expect periodic assessment of technical competence, including a comprehensive examination in their senior year. Scholarships. In addition to scholarships offered through the university’s Financial Aid Office and the Whitacre College of Engineering, the Department of Chemical Engineering offers scholarships to qualified students.
Curriculum. The first curriculum table in this section gives an eight-semester sequence of required courses that must be taken in the order shown as partial requirements for the BSChE degree. The remaining requirements can be taken as the student’s load permits, provided all prerequisites are met. Specification of prerequisites implies all prior prerequisites must have been met. Oral communication is included in CHE 2306 and CHE 4455 . Communication literacy courses include CHE 2306 , CHE 3232 , CHE 4232 , and CHE 4455 .
The department also offers a combined BS and M.S. curriculum in which completion of degree requirements leads to the awarding of two degrees (see curriculum table).
Minors. Along with the BSChE degree, a student may declare a minor in a field of his or her choice. Any required or elective courses in the chemical engineering curriculum may be applied toward the minor, with the approval of the minor department. While declaration of a minor is not required, it is strongly recommended. Minors in bioengineering and in polymers and materials are offered by the department. A minor in chemistry or mathematics can also be earned with very few additional hours.
Graduate Program
For information on graduate programs offered by the Department of Chemical Engineering, visit the Graduate Programs section of the catalog.
Undergraduate Program Offerings, Course Descriptions & Curricular Tables
(Click on program for curricular table.)
ProgramsBachelor’sUndergraduate MinorAccelerated Bachelor’s to Master’s DegreeCoursesCHE - Chemical Engineering (Undergraduate Courses)
|